ALGEBRA IILesson 0124 - ExponentsDR. PAUL L. BAILEYMonday, January 24, 2022

1. EXPONENTS

Let a be a positive real number, and let x be a real number. We ask, what is the meaning of $a^{x?}$

1.1. When x is a positive integer. Let n = x, and assume that n is a positive integer. Then a^n is defined to mean the product of n numbers whose value is a:

$$a^n = \underbrace{a \times \cdots \times a}_{n \text{ times}}.$$

From this, we obtain two significant properties.

(E1) $a^{m+n} = a^m \cdot a^n$ (E2) $(a^m)^n = a^{mn}$

To see this, write

$$a^{m+n} = \underbrace{a \times \cdots \times a}_{m+n \text{ times}} = \underbrace{a \times \cdots \times a}_{m \text{ times}} \times \underbrace{a \times \cdots \times a}_{n \text{ times}} = a^m \times a^n.$$

and

$$(a^m)^n = (\underbrace{a \times \dots \times a}_{m \text{ times}})^n = (\underbrace{a \times \dots \times a}_{m \text{ times}}) \times \dots \times (\underbrace{a \times \dots \times a}_{m \text{ times}}) = \underbrace{a \times \dots \times a}_{mn \text{ times}} = a^{mn}$$

We wish to extend the meaning of a^x so that it is defined for any real number x, in such a way that the properties (E1) and (E2) remain true.

1.2. When x = 0. Consider the case when x = 0. We multiply a times a^0 ; whatever a^0 means, if property (E1) is to remain true, we have

$$aa^0 = a^1a^0 = a^{1+0} = a^1 = a.$$

Dividing both sides by a gives

 $a^0 = 1.$

1.3. When x is a negative integer. Consider the case when x is a negative integer, so that x = -n for some positive integer n. For (E1) to remain true, we must have

$$a^n a^x = a^{n+x} = a^0 = 1.$$

In this case,

$$a^{-n} = \frac{1}{a^n}.$$

1.4. When x is rational. Consider the case when $x = \frac{1}{n}$, where n is a positive integer. For (E2) to remain true, we must have

$$(a^{1/n})^n = a^{n/n} = a^1 = a.$$

Thus, $a^{1/n}$ is the unique number whose n^{th} power is a; that is,

$$a^{1/n} = \sqrt[n]{a}$$

Consider the case when $x = \frac{m}{n}$, where *m* and *n* are positive integers. Then **(E2)** produces $a^{m/n} = (a^m)^{1/n}$, so

$$a^{m/n} = \sqrt[n]{a^m}$$

1.5. When x is irrational. We now consider the case when x is irrational. This is the hardest step.

Integers are obtained from natural numbers by algebraic considerations (defining subtraction), and rational numbers are obtained from integers by additional algebraic considerations (defining division); however, real numbers are obtained from rationals by geometric considerations (filling in gaps in the number line).

There is an additional property of exponents which is important in this context:

(E3) if 1 < a and r < s, then $a^r < a^s$

This is true when x is any rational number, and we wish it to remain true for any real number.

We line up all of the rationals by the order relation <, and see that there are gaps in the line; so, too, we can line up all of the numbers of the form a^q where q is rational, and see that there are gaps in the line; we hope to fill these gaps by numbers of the form a^x , where x is irrational.

Using calculus, we can show the following.

Fact 1. Let x be an irrational number. Then there exists a unique real number y such that, for every two rational numbers $r, s \in \mathbb{Q}$ with r < x < s, then $a^r < y < a^s$.

We define a^x to be the unique y with this property.

1.6. Exponential Functions. Let a be a positive real number. Now that a^x is defined for any real number x, we see that, by letting x vary throughout the real numbers, we obtain a function.

The base a exponential function is the function a^x . This function has these properties:

(a) $a^{0} = 1$ (b) $a^{1} = a$ (c) $a^{r+s} = a^{r}a^{s}$ (d) $(a^{r})^{s} = a^{rs}$ (e) $r < s \Rightarrow a^{r} < a^{s}$, if a > 1(f) $r < s \Rightarrow a^{r} > a^{s}$, if 0 < a < 1

Let $f(x) = x^a$ and $g(x) = a^x$. For f, the variable is in the base, and for g, the variable is in the exponent. We call f and power function, and we call g an exponential function. These functions have very different properties, and the reader is cautioned to keep track of the differences between them.

1.7. Exercises.

Problem 1. Use the properties of exponents to simplify the following.

- (a) $25^{3/2}$
- **(b)** 343^{-2/3}
- (c) $1024^{2/5}$